a2 United States Patent

Yang et al.

US009384845B2

US 9,384,845 B2
Jul. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

PARTIAL ERASE OF NONVOLATILE
MEMORY BLOCKS

Applicant: SanDisk Technologies Inc., Plano, TX
(US)

Inventors: Niles Yang, Mountain View, CA (US);
Jianmin Huang, San Carlos, CA (US)
Assignee: SanDisk Technologies L1.C, Plano, TX
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/546,133

Filed: Nov. 18, 2014
Prior Publication Data
US 2016/0141041 Al May 19, 2016
Int. CI.
G1IC 16/04 (2006.01)
G1IC 16/16 (2006.01)
G1IC 16/34 (2006.01)
Gl11C 16/14 (2006.01)
GO6F 12/02 (2006.01)
U.S. CL
CPC G11C 16/16 (2013.01); G11C 16/3445

(2013.01); GO6F 12/0246 (2013.01); G1IC
16/14 (2013.01)

Field of Classification Search
CPC . GOG6F 12/0246; GOGF 12/0238; G11C 16/16;
G11C 16/06; G11C 16/14; G11C 11/5635;
G11C 13/0097
.......................... 365/185.29,185.11, 185.03,

365/185.17-185.18
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,660,156 B2* 2/2010 Cernea G11C 8/08
365/185.17
8,767,478 B2* 7/2014 Shiino G11C 16/16
365/185.29
9,152,555 B2* 10/2015 Higgins GO6F 12/0246
2006/0248269 Al 11/2006 Shona
2011/0069543 Al 3/2011 Leeetal.
2011/0075482 Al 3/2011 Shepard et al.
2012/0233384 Al 9/2012 Charles et al.
2013/0198436 Al 82013 Bandic et al.
2013/0279248 Al 10/2013 Shepard et al.
2014/0269090 Al 9/2014 Flynn et al.
OTHER PUBLICATIONS

International Search Report and Written Opinion in International
Patent Application No. PCT/US2015/051248, mailed Nov. 26, 2015,
11 pages.

* cited by examiner

Primary Examiner — David Lam

(74) Attorney, Agent, or Firm — Davis Wright Tremaine
LLP

(57) ABSTRACT

Erasing blocks of a nonvolatile memory may include two
erase steps. A first erase step brings the memory cells of a
block to an intermediate state between their programmed
states and an erased state. The block is then maintained with
the memory cells in the intermediate state for a period of time.
Subsequently, a second erase step on the block brings the
memory cells from the intermediate state to the erased state.

19 Claims, 15 Drawing Sheets

HOST 80

MEMORY SYSTEM 560

Controller 562

-~ 576

Logical-to-
physicat
mapping

578
ECC circuit

Memory 564

- 566

{— 570

572 574
Erase Write
circuit circuit

U.S. Patent Jul. 5, 2016 Sheet 1 of 15

US 9,384,845 B2

HOST 80

MEMORY SYSTEM 90

Controller 100

Interface 110

A
Y

Processor 120

Cptional
CoProcessor 121

ROM 122

Optional
Programmable
Nonvolatile Memory
124

RAM 130

Memory 102

FIG. 1

US 9,384,845 B2

Sheet 2 of 15

Jul. §5,2016

U.S. Patent

l 30
N\
13_ 16

Source

Control
gate

20

Drain

FIG. 2

“1 " "2" "3" "4" “5" "6"

"O“

Irer

3.5 Vea(V)

3.0

FIG. 3

U.S. Patent Jul. 5, 2016 Sheet 3 of 15
Drain
NAND STRING |56
50
Drain S
Select]
32
20
30 (
' 10
Control Gate n ;—-l tf Mn —7
' 10
Control Gate 2 \ vl M2 —
30
N . 10
Control Gate 1 ' M1 —
[}
32
Source \ S1
Select
[54
Source

FIG. 4A

US 9,384,845 B2

U.S. Patent Jul. 5, 2016 Sheet 4 of 15 US 9,384,845 B2

Ve 210
56 |
» IL___ [—« |._<
b
-7--—C . 4 ®
Pty i | | w 50
;—’ 9 ,
) Source
44 |54 Line
))) \
|—< I—-< |—4 34
PR N ® ,
R ® ®
:
s e, o ®
9 ® ®
. : |
Y
36
Bit Lines

FIG. 4B

U.S. Patent Jul. 5, 2016 Sheet 5 of 15 US 9,384,845 B2

214~ Physical Page of Data Laiches <>
212 ~] .
210 Physical Page of Sense Amps
N
BLO BLt1 BL2 BL3 BL4 BL5 BLm-1 BLm
|‘ hanet s |
SGD \ 1l // | | | | | e] |
il I E ;‘E ;-E LE ;-E\ i |
wen —HEE— AHL% s
42/l':'_ B e o
| ! ! ! ! ! ! :
|t 60
| il i L
WL3
wL2
wWL1 . c : S
WLO
SGS l | f
44
Source Line\ 34
Y
X

FIG. 5

U.S. Patent Jul. 5, 2016 Sheet 6 of 15 US 9,384,845 B2

-«— Threshold Window —»
Erased

| v, oV, A
FIG. 6A [\ [\ [\ ' [\

FIG. 6B

“Erased”

Ll T
I |
I !
I 1
| |
I |
! 1
I |
I |
| |
| |
I |
! |
| |
I |
I !
1
I 1
|
|
| |
! |
I |

FIG. 6C
Upper Blt/ \I Lower Bit

¥ l I
! I

! ! I Vi

I | ' —
| |

i |

i | |

i | |

Programming into four states represented by a 2-bit code

US 9,384,845 B2

Sheet 7 of 15

Jul. §5,2016

U.S. Patent

€0/

g0/

60/

104 /\A

US 9,384,845 B2

Sheet 8 of 15

Jul. §5,2016

U.S. Patent

u Buing

L-u Bung

d ooid

>

vV X00|g

US 9,384,845 B2

Sheet 9 of 15

Jul. §5,2016

U.S. Patent

0} "OIid

| Bus

80IN0Sg

1SOS

LETIM

0ETM

<M

1M

0IM

1a9S

0 Bug

804n0g

089S

LETIM

0€IM

¢IM

LM

0

__0a9s

U.S. Patent Jul. 5, 2016 Sheet 10 of 15 US 9,384,845 B2

WL WL WL
N-1 N N+1
302a 302b 302¢
S e
A o] €
b + +
3047 5N\ ‘{' N v

FIG. 11A

WL WL WL
N-1 N N+1

302a ~ 302b 302¢

AY

AR AR Y4
FIG. 11B

WL WL WL
N-1 N N+1

302a ~ 302b 302¢

Sae et SYSIE
LN (AN I AN

oot

FIG. 11C

YOG P OYe

¢
S

U.S. Patent Jul. 5, 2016 Sheet 11 of 15

WL o | wLi WL |©
N-1 N |7 | N+1

')
N

"

)

N
R o
k—b - . j

US 9,384,845 B2

3023 -1302b ~ © /;3’020 N

i
300/ NS \\V -

=)
N

FIG. 11D

302¢

FIG. 11F

U.S. Patent Jul. 5, 2016 Sheet 12 of 15 US 9,384,845 B2

FIG. 11G

N

; %

Er?’se 1

¢ v
§ g
%

Logic Level: 114 o1 001 101 100 110 0100000

FIG. 12

U.S. Patent Jul. 5, 2016 Sheet 13 of 15 US 9,384,845 B2

Frogarrned dale

FIG. 13A .. . o onon n s
. £ L i1 it L £ i
FIE S M $ L E 5% B g1 gl
i % 5 & PR i $ 3] 3 & i3 i i
M 3 Pt £ 3 88 g & P T i i
E A 3 FY Pk F TR T]
Ergse wt igl oicl job BV ifY i4
; ik H [k g i
; s T O T
; % § % ¢ Fop o3 o§ b3 & oy 3oy
i 5 T BB LR AR T L T
Lo Lewerd. 179 (SR R LY B (L IO R 5 B C
“grtial Brased slads
F I G. 13B Boy ey i roguioad
% = S
H ﬁ"g e %«»,ﬁ
FE & 5,
2 % # £
i y £ %
F % é %
¥ W F i"&
i) F %
H yF Y
Ergse % g %
§ ¥ %
7 & 5,
Logic Level: 11

U.S. Patent

'

Jul. 5, 2016
Program the block -~ 440
% L~ 442
Read the block

Decided to erase the
memory hlock

444

'

Erase the block partially with
1) Less erase puise; 2) higher
ERV levels; 3} Lower VERA
levels; 4) Shorter erase time;
At background, or host
requested or security
required time

446

i

Verify the block has been
partially erase by reading the#
of 1 and # of 0 bits from the
representative wordlines. Use
a Vegr read threshold~2V. And
count #'1 bit <25%, for
example,

.~ 448

Sheet 14 of 15

: — 450

Stage the block and
feave itin the free

US 9,384,845 B2

block list for further
action.

452

Need to program
the block

454

Erase the block as normal
erase operation. The
erase time should be

shorter than the normat -

erase operation when
starting from fully
programmed state.

FIG. 14

¥ o 456

Check the erase
compietion by doing the
normal ERV

¥ 458

Program this block right

away

U.S. Patent Jul. 5, 2016 Sheet 15 of 15 US 9,384,845 B2

HOST &0

MEMORY SYSTEM 560

Controller 562 Memory 564
l‘ﬁ'arﬁéﬁ erased block pool 568 '}
i I
| I
| |
] |
] I
{ | | L4566
I
576
Logicat-to-
physical
mapping
578
ECC circuit 572 574 | 570
Erase Write -1
circuit circuit

FIG. 15

US 9,384,845 B2

1
PARTIAL ERASE OF NONVOLATILE
MEMORY BLOCKS

BACKGROUND

This application relates to the operation of re-program-
mable nonvolatile memory such as semiconductor flash
memory.

Solid-state memory capable of nonvolatile storage of
charge, particularly in the form of EEPROM and flash
EEPROM packaged as a small form factor card, has become
the storage of choice in a variety of mobile and handheld
devices, notably information appliances and consumer elec-
tronics products. Unlike RAM (random access memory) that
is also solid-state memory, flash memory is non-volatile, and
retains its stored data even after power is turned off. Also,
unlike ROM (read only memory), flash memory is rewritable
similar to a disk storage device.

Flash EEPROM is similar to EEPROM (electrically eras-
able and programmable read-only memory) in that it is a
non-volatile memory that can be erased and have new data
written or “programmed” into their memory cells. Both uti-
lize a floating (unconnected) conductive gate, in a field effect
transistor structure, positioned over a channel region in a
semiconductor substrate, between source and drain regions.
A control gate is then provided over the floating gate. The
threshold voltage characteristic of the transistor is controlled
by the amount of charge that is retained on the floating gate.
That is, for a given level of charge on the floating gate, there
is a corresponding voltage (threshold) to be applied to the
control gate before the transistor is turned “on” to permit
conduction between its source and drain regions. Flash
memory such as Flash EEPROM allows entire blocks of
memory cells to be erased at the same time.

The floating gate can hold a range of charges and therefore
can be programmed to any threshold voltage level within a
threshold voltage window. The size of the threshold voltage
window is delimited by the minimum and maximum thresh-
old levels of the device, which in turn correspond to the range
of'the charges that can be programmed onto the floating gate.
The threshold window generally depends on the memory
device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within
the window may, in principle, be used to designate a definite
memory state of the cell.

Nonvolatile memory devices are also manufactured from
memory cells with a dielectric layer for storing charge.
Instead of the conductive floating gate elements described
earlier, a dielectric layer is used. An ONO dielectric layer
extends across the channel between source and drain diffu-
sions. The charge for one data bit is localized in the dielectric
layer adjacent to the drain, and the charge for the other data bit
is localized in the dielectric layer adjacent to the source.
Multi-state data storage is implemented by separately reading
the binary states of the spatially separated charge storage
regions within the dielectric.

Many nonvolatile memories are formed along a surface of
a substrate (e.g. silicon substrate) as two dimensional (2D), or
planar, memories. Other nonvolatile memories are three
dimensional (3-D) memories that are monolithically formed
in one or more physical levels of memory cells having active
areas disposed above a substrate.

In some cases, errors occur in data when the data is read out
after being stored in a nonvolatile memory. Small numbers of
errors can generally be corrected by Error Correction Code
(ECC). Large numbers of errors may be uncorrectable by

10

15

20

25

30

35

40

45

50

55

60

2

ECC (UECC). Even when errors are correctable, such cor-
rection may require significant resources and may take sig-
nificant time.

SUMMARY

In some nonvolatile memories, erased blocks change over
time after they are erased so that a block that is programmed
long after erase may be different to a block that is pro-
grammed soon after erase. These differences may have unde-
sirable consequences. For example, in charge storage memo-
ries, auxiliary charge (charge in the memory thatis outside the
charge storage element, e.g. in dielectric portions of the cell)
may migrate into a block after it is erased so that the longer a
block is maintained in an erased state, the more auxiliary
charge it contains. When a block with a substantial amount of
auxiliary charge is programmed the auxiliary charge may
increase threshold voltages of cells causing target threshold
voltages to be reached sooner than in a block without signifi-
cant auxiliary charge. Subsequently, when auxiliary charge
migrates out of the block after programming, threshold volt-
ages drop and may result in bad bits. To avoid differences
between blocks that were erased at different times, an erase
may be performed in two steps. For example, a first erase step
removes charge to an intermediate level that is less than the
programmed level and more than the fully erased level.
Blocks may be maintained in this condition, which does not
cause significant acquisition of auxiliary charge in the block,
until the block is about to be programmed. Then, a second
erase step brings a block to the fully erased condition imme-
diately before, or within a predetermined time before, pro-
gramming is performed on the block. In this way, blocks
spend little or no time in the fully erased condition and all
blocks may be programmed from a substantially identical
condition.

An example of a method of operating a nonvolatile
memory includes: performing a first erase step on memory
cells of a programmed block, the first erase step bringing the
memory cells to an intermediate state between their pro-
grammed states and an erased state; subsequently maintain-
ing the block with the memory cells in the intermediate state
for a period of time; and subsequently performing a second
erase step on the block, the second erase step bringing the
memory cells from the intermediate state to the erased state.

The second erase step may be performed in response to
identifying the block as a destination for storage of user data,
and the user data may be stored immediately after the second
erase step. The block may be maintained with the memory
cells in the intermediate state in a pool of partially erased
blocks that are available for subsequent performance of the
second erase step followed by storage of user data. An indi-
vidual block may remain in the pool of partially erased blocks
until data is to be stored in the individual block. The memory
cells may be charge storage memory cells and the first erase
step may remove more than half the charge from the pro-
grammed block. The first erase step may take a first time, the
second erase step may take a second time, and the first time
may be greater than the second time. The first time may be
more than twice as long as the second time. The first erase step
may apply erase conditions to the memory cells without veri-
fication that the memory cells have reached a particular state.
The first erase step may be performed as a background opera-
tion, the second erase step may be performed in response to a
host write command, and the second erase step may include
verification that the memory cells have reached the erased
state.

US 9,384,845 B2

3

An example of a nonvolatile memory system includes: a
plurality of individually erasable blocks of memory cells; an
erase circuit that is configured to apply first erase conditions
to a block that is programmed to bring the block to a partially
erased condition at a first time and to subsequently apply
second erase conditions to bring the block to an erased con-
dition at a second time; and a pool of partially erased blocks
that are maintained in the partially erased condition.

A write circuit may be configured to write data in the block
immediately after the erase circuit brings the block to the
erased condition. The erase circuit may be configured to
apply the first erase conditions to the block as a background
operation. The erase circuit may be configured to apply the
second erase conditions to the block in response to receiving
a host write command and identifying the block as a destina-
tion for data of the host write command. The erase circuit may
be configured to bring the block to the partially erased con-
dition without verification of the partially erased condition
and the erase circuit may be configured to subsequently bring
the block to the erased condition and to verify the erased
condition. The plurality of blocks may be NAND flash
memory blocks and the memory cells may be flash memory
cells. The erase circuit may be configured to remove charge
from the block, the first erase conditions removing more
charge from the block than the second erase conditions.

An example of a method of operating a nonvolatile
memory includes: performing a first erase step on charge
storage memory cells of an individual block that is pro-
grammed, the first erase step removing charge from the
memory cells to bring the memory cells to an intermediate
state with more charge than an erased state; subsequently
maintaining the block with the memory cells in the interme-
diate state until the block is to be written; subsequently, in
response to determining that the individual block is to be
written, performing a second erase step on the block, the
second erase step bringing the memory cells from the inter-
mediate state to the erased state and verifying that the
memory cells have reached the erased state; and subse-
quently, when the memory cells reach the erased state, pro-
gramming the memory cells.

The memory cells may be brought to the intermediate state
and may subsequently be maintained in the intermediate state
without verification of the intermediate state. The first erase
step may remove more charge and take more time than the
second erase step does. The first erase step may be performed
in response to a host command or security request requiring
that data in the individual block be made unreadable. The
method may include: subsequent to the programming of the
memory cells, while at least a portion of the individual block
remains unprogrammed, identifying the block for erase; in
response to identifying the block for erase, performing pre-
erase conditioning on the unprogrammed portion that adds
charge to memory cells in the unprogrammed portion; and
subsequently repeating the first erase step to bring the
memory cells to the intermediate state.

Various aspects, advantages, features and embodiments are
included in the following description of exemplary examples
thereof, which description should be taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates schematically the main hardware compo-
nents of a memory system.

FIG. 2 illustrates schematically a non-volatile memory
cell.

10

15

20

25

30

35

40

45

55

60

65

4

FIG. 3 illustrates the relation between the source-drain
current I, and the control gate voltage V . for four different
charges Q1-Q4 that the floating gate may be selectively stor-
ing at any one time at fixed drain voltage.

FIG. 4A illustrates schematically a string of memory cells
organized into a NAND string.

FIG. 4B illustrates an example of a NAND array 210 of
memory cells, constituted from NAND strings 50 such as that
shown in FIG. 4A.

FIG. 5 illustrates a page of memory cells, organized in the
NAND configuration, being sensed or programmed in paral-
lel.

FIGS. 6A-6C illustrate an example of programming a
population of memory cells.

FIG. 7 shows an example of a physical structure of'a 3-D
NAND string.

FIG. 8 shows an example of a physical structure of a
U-shaped 3-D NAND string.

FIG. 9 shows a cross section ofa 3-D NAND memory array
with U-shaped NAND strings in the y-z plane.

FIG. 10 shows a cross section of a 3-D NAND memory
with straight NAND strings.

FIGS. 11A-G show how auxiliary charge may affect
memory cells.

FIG. 12 shows how auxiliary charge may affect threshold
voltages of memory cells.

FIGS. 13A-C illustrate partial erase followed by full erase.

FIG. 14 illustrates how blocks may be operated using a
partial erase scheme.

FIG. 15 illustrates an example of hardware using partial
erase.

DETAILED DESCRIPTION
Memory System

Semiconductor memory devices include volatile memory
devices, such as dynamic random access memory (“DRAM”)
or static random access memory (“SRAM”) devices, non-
volatile memory devices, such as resistive random access
memory (“ReRAM?”), electrically erasable programmable
read only memory (“EEPROM?”), flash memory (which can
also be considered a subset of EEPROM), ferroelectric ran-
dom access memory (“FRAM”), and magnetoresistive ran-
dom access memory (“MRAM”), and other semiconductor
elements capable of storing information. Each type of
memory device may have different configurations. For
example, flash memory devices may be configured in a
NAND or a NOR configuration.

The memory devices can be formed from passive and/or
active elements, in any combinations. By way of non-limiting
example, passive semiconductor memory elements include
ReRAM device elements, which in some embodiments
include a resistivity switching storage element, such as an
anti-fuse, phase change material, etc., and optionally a steer-
ing element, such as a diode, etc. Further by way of non-
limiting example, active semiconductor memory elements
include EEPROM and flash memory device elements, which
in some embodiments include elements containing a charge
storage region, such as a floating gate, conductive nanopar-
ticles, or a charge storage dielectric material.

Multiple memory elements may be configured so that they
are connected in series or so that each element is individually
accessible. By way of non-limiting example, flash memory
devices in a NAND configuration (NAND memory) typically
contain memory elements connected in series. A NAND
memory array may be configured so that the array is com-

US 9,384,845 B2

5

posed of multiple strings of memory in which a string is
composed of multiple memory elements sharing a single bit
line and accessed as a group. Alternatively, memory elements
may be configured so that each element is individually acces-
sible, e.g., a NOR memory array. NAND and NOR memory
configurations are exemplary, and memory elements may be
otherwise configured.

The semiconductor memory elements located within and/
or over a substrate may be arranged in two or three dimen-
sions, such as a two dimensional memory structure or a three
dimensional memory structure.

In a two dimensional memory structure, the semiconductor
memory elements are arranged in a single plane or a single
memory device level. Typically, in a two dimensional
memory structure, memory elements are arranged in a plane
(e.g., in an x-z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a wafer over or in
which the layer of the memory elements are formed or it may
be a carrier substrate which is attached to the memory ele-
ments after they are formed. As a non-limiting example, the
substrate may include a semiconductor such as silicon.

The memory elements may be arranged in the single
memory device level in an ordered array, such as in a plurality
of'rows and/or columns. However, the memory elements may
be arrayed in non-regular or non-orthogonal configurations.
The memory elements may each have two or more electrodes
or contact lines, such as bit lines and word lines.

A three dimensional memory array is arranged so that
memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (i.e., in the x, y and z directions, where the y
direction is substantially perpendicular and the x and z direc-
tions are substantially parallel to the major surface of the
substrate).

As a non-limiting example, a three dimensional memory
structure may be vertically arranged as a stack of multiple two
dimensional memory device levels. As another non-limiting
example, a three dimensional memory array may be arranged
as multiple vertical columns (e.g., columns extending sub-
stantially perpendicular to the major surface of the substrate,
i.e., in the y direction) with each column having multiple
memory elements in each column. The columns may be
arranged in a two dimensional configuration, e.g., in an x-z
plane, resulting in a three dimensional arrangement of
memory elements with elements on multiple vertically
stacked memory planes. Other configurations of memory ele-
ments in three dimensions can also constitute a three dimen-
sional memory array.

By way of non-limiting example, in a three dimensional
NAND memory array, the memory elements may be coupled
together to form a NAND string within a single horizontal
(e.g., x-z) memory device levels. Alternatively, the memory
elements may be coupled together to form a vertical NAND
string that traverses across multiple horizontal memory
device levels. Other three dimensional configurations can be
envisioned wherein some NAND strings contain memory
elements in a single memory level while other strings contain
memory elements which span through multiple memory lev-
els. Three dimensional memory arrays may also be designed
in a NOR configuration and in a ReRAM configuration.

Typically, in a monolithic three dimensional memory array,
one or more memory device levels are formed above a single
substrate. Optionally, the monolithic three dimensional
memory array may also have one or more memory layers at
least partially within the single substrate. As a non-limiting
example, the substrate may include a semiconductor such as

10

15

20

25

30

35

40

45

50

55

60

65

6

silicon. In a monolithic three dimensional array, the layers
constituting each memory device level of the array are typi-
cally formed on the layers of the underlying memory device
levels of the array. However, layers of adjacent memory
device levels of a monolithic three dimensional memory array
may be shared or have intervening layers between memory
device levels.

Then again, two dimensional arrays may be formed sepa-
rately and then packaged together to form a non-monolithic
memory device having multiple layers of memory. For
example, non-monolithic stacked memories can be con-
structed by forming memory levels on separate substrates and
then stacking the memory levels atop each other. The sub-
strates may be thinned or removed from the memory device
levels before stacking, but as the memory device levels are
initially formed over separate substrates, the resulting
memory arrays are not monolithic three dimensional memory
arrays. Further, multiple two dimensional memory arrays or
three dimensional memory arrays (monolithic or non-mono-
lithic) may be formed on separate chips and then packaged
together to form a stacked-chip memory device.

Associated circuitry is typically required for operation of
the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip and/or
on the same substrate as the memory elements.

In other embodiments, types of memory other than the two
dimensional and three dimensional exemplary structures
described here may be used.

FIG. 1 illustrates schematically the main hardware compo-
nents of a memory system suitable for implementing some of
the techniques described here The memory system 90 typi-
cally operates with a host 80 through a host interface. The
memory system may be in the form of a removable memory
such as a memory card, or may be in the form of an embedded
memory system. The memory system 90 includes a memory
102 whose operations are controlled by a controller 100. The
memory 102 comprises one or more array of non-volatile
memory cells distributed over one or more integrated circuit
chip. The controller 100 may include interface circuits 110, a
processor 120, ROM (read-only-memory) 122, RAM (ran-
dom access memory) 130, programmable nonvolatile
memory 124, and additional components. The controller is
typically formed as an ASIC (application specific integrated
circuit) and the components included in such an ASIC gen-
erally depend on the particular application. Memory systems
may be used with a variety of hosts in a variety of different
environments. For example, a host may be a mobile device
such as a cell phone, laptop, music player (e.g. MP3 player),
Global Positioning System (GPS) device, tablet computer, or
the like. Such memory systems may be inactive, without
power, for long periods during which they may be subject to
various conditions including high temperatures, vibration,
electromagnetic fields, etc. Memory systems for such hosts,
whether removable or embedded, may be selected for low
power consumption, high data retention, and reliability in a
wide range of environmental conditions (e.g. a wide tempera-
ture range). Other hosts may be stationary. For example,
servers used for internet applications may use nonvolatile
memory systems for storage of data that is sent and received
over the internet. Such systems may remain powered up with-
out interruption for extended periods (e.g. a year or more) and

US 9,384,845 B2

7

may be frequently accessed throughout such periods. Indi-
vidual blocks may be frequently written and erased so that
endurance may be a major concern.

Physical Memory Structure

FIG. 2 illustrates schematically a non-volatile memory
cell. The memory cell 10 can be implemented by a field-effect
transistor having a charge storage unit 20, such as a floating
gate or a charge trapping (dielectric) layer. The memory cell
10 also includes a source 14, a drain 16, and a control gate 30.

There are many commercially successful non-volatile
solid-state memory devices being used today. These memory
devices may employ different types of memory cells, each
type having one or more charge storage clement.

In practice, the memory state of a cell is usually read by
sensing the conduction current across the source and drain
electrodes of the cell when a reference voltage is applied to
the control gate. Thus, for each given charge on the floating
gate of a cell, a corresponding conduction current with
respect to a fixed reference control gate voltage may be
detected. Similarly, the range of charge programmable onto
the floating gate defines a corresponding threshold voltage
window or a corresponding conduction current window.

Alternatively, instead of detecting the conduction current
among a partitioned current window, it is possible to set the
threshold voltage for a given memory state under test at the
control gate and detect if the conduction current is lower or
higher than a threshold current (cell-read reference current).
Inone implementation the detection of the conduction current
relative to a threshold current is accomplished by examining
the rate the conduction current is discharging through the
capacitance of the bit line.

FIG. 3 illustrates the relation between the source-drain
current I, and the control gate voltage V . for four different
charges Q1-Q4 that the floating gate may be selectively stor-
ing at any one time. With fixed drain voltage bias, the four
solid I, versus V. curves represent four of seven possible
charge levels that can be programmed on a floating gate of a
memory cell, respectively corresponding to four possible
memory states. As an example, the threshold voltage window
of'a population of cells may range from 0.5V to 3.5V. Seven
possible programmed memory states “07, 17, 27, “3” “4”,
“57”, %67, and an erased state (not shown) may be demarcated
by partitioning the threshold window into regions in intervals
ot 0.5V each. For example, if a reference current, IREF of 2
LA is used as shown, then the cell programmed with Q1 may
be considered to be in a memory state “1” since its curve
intersects with I, in the region of the threshold window
demarcated by VCG=0.5V and 1.0V. Similarly, Q4 is in a
memory state “5”.

As can be seen from the description above, the more states
a memory cell is made to store, the more finely divided is its
threshold voltage window. For example, a memory device
may have memory cells having a threshold voltage window
that ranges from -1.5V to 5V. This provides a maximum
width of 6.5V. If the memory cell is to store 16 states, each
state may occupy from 200 mV to 300 mV in the threshold
window. This will require higher precision in programming
and reading operations in order to be able to achieve the
required resolution.

NAND Structure

FIG. 4A illustrates schematically a string of memory cells
organized into a NAND string. A NAND string 50 comprises
a series of memory transistors M1, M2, ... Mn (e.g., n=4, 8,
16 orhigher) daisy-chained by their sources and drains. A pair
of select transistors S1, S2 controls the memory transistor
chain’s connection to the external world via the NAND
string’s source terminal 54 and drain terminal 56 respectively.

10

15

20

25

30

35

40

45

50

55

60

65

8

In a memory array, when the source select transistor S1 is
turned on, the source terminal is coupled to a source line (see
FIG. 4B). Similarly, when the drain select transistor S2 is
turned on, the drain terminal of the NAND string is coupled to
a bit line of the memory array. Each memory transistor 10 in
the chain acts as a memory cell. It has a charge storage
element 20 to store a given amount of charge so as to represent
an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As
will be seen in FIG. 4B, the control gates 30 of corresponding
memory transistors of arow of NAND string are all connected
to the same word line. Similarly, a control gate 32 of each of
the select transistors S1, S2 provides control access to the
NAND string via its source terminal 54 and drain terminal 56
respectively. Likewise, the control gates 32 of corresponding
select transistors of a row of NAND string are all connected to
the same select line.

When an addressed memory transistor 10 within a NAND
string is read or is verified during programming, its control
gate 30 is supplied with an appropriate voltage. At the same
time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of suffi-
cient voltage on their control gates. In this way, a conductive
path is effectively created from the source of the individual
memory transistor to the source terminal 54 of the NAND
string and likewise for the drain of the individual memory
transistor to the drain terminal 56 of the cell.

FIG. 4B illustrates an example of a NAND array 210 of
memory cells, constituted from NAND strings 50 such as that
shown in FIG. 4A. Along each column of NAND strings, a bit
line such as bit line 36 is coupled to the drain terminal 56 of
each NAND string. Along each bank of NAND strings, a
source line such as source line 34 is coupled to the source
terminals 54 of each NAND string. Also the control gates
along a row of memory cells in a bank of NAND strings are
connected to a word line such as word line 42. The control
gates along a row of select transistors in a bank of NAND
strings are connected to a select line such as select line 44. An
entire row of memory cells in a bank of NAND strings can be
addressed by appropriate voltages on the word lines and
select lines of the bank of NAND strings.

FIG. 5 illustrates a page of memory cells, organized in the
NAND configuration, being sensed or programmed in paral-
lel. FIG. 5 essentially shows a bank of NAND strings 50 in the
memory array 210 of FIG. 4B, where the detail of each
NAND string is shown explicitly as in FIG. 4A. A physical
page, such as the page 60, is a group of memory cells enabled
to be sensed or programmed in parallel. This is accomplished
by a corresponding page of sense amplifiers 212. The sensed
results are latched in a corresponding set of latches 214. Each
sense amplifier can be coupled to a NAND string via a bit line.
The page is enabled by the control gates of the cells of the
page connected in common to a word line 42 and each cell
accessible by a sense amplifier accessible via a bit line 36. As
an example, when respectively sensing or programming the
page of cells 60, a sensing voltage or a programming voltage
is respectively applied to the common word line WL3
together with appropriate voltages on the bit lines.

Physical Organization of the Memory

One difference between flash memory and other of types of
memory is that a flash memory cell is generally programmed
from the erased state. That is the floating gate is generally first
emptied of charge. Programming then adds a desired amount
of charge back to the floating gate. Flash memory does not
generally support removing a portion of the charge from the
floating gate to go from a more programmed state to a lesser

US 9,384,845 B2

9

one. This means that updated data cannot overwrite existing
data and is instead written to a previous unwritten location.

Furthermore erasing is to empty all the charges from the
floating gate and generally takes appreciable time. For that
reason, it will be cumbersome and very slow to erase cell by
cell or even page by page. In practice, the array of memory
cells is divided into a large number ot blocks of memory cells.
As is common for flash EEPROM systems, the block is the
unit of erase. That is, each block contains the minimum num-
ber of memory cells that are erased together. While aggregat-
ing a large number of cells in a block to be erased in parallel
will improve erase performance, a large size block also entails
dealing with a larger number of update and obsolete data.

Each block is typically divided into a number of physical
pages. A logical page is a unit of programming or reading that
contains a number of bits equal to the number of cells in a
physical page. In a memory that stores one bit per cell, one
physical page stores one logical page of data. In memories
that store two bits per cell, a physical page stores two logical
pages. The number of logical pages stored in a physical page
thus reflects the number of bits stored per cell. In one embodi-
ment, the individual pages may be divided into segments and
the segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or
more logical pages of data are typically stored in one row of
memory cells. A page can store one or more sectors. A sector
includes user data and overhead data.

MLC Programming

FIG. 6 A-6C illustrate an example of programming a popu-
lation of 4-state memory cells. FIG. 6A illustrates the popu-
lation of memory cells programmable into four distinct dis-
tributions of threshold voltages respectively representing
memory states “E”, “A”, “B” and “C”. FIG. 6B illustrates the
initial distribution of “erased” threshold voltages for an
erased memory. FIG. 6C illustrates an example of the
memory after many of the memory cells have been pro-
grammed. Essentially, a cell initially has an “erased” thresh-
old voltage and programming will move it to a higher value
into one of the three zones demarcated by verify levels vV,
vV, and vV;. In this way, each memory cell can be pro-
grammed to one of the three programmed states “A”, “B” and
“C” or remain un-programmed in the “erased” state. As the
memory gets more programming, the initial distribution of
the “erased” state as shown in FIG. 6B will become narrower
and the erased state is represented by the “0” state.

A 2-bit code having a lower bit and an upper bit can be used
to represent each of the four memory states. For example, the
“E”, “A”, “B” and “C” states are respectively represented by
“117, 017, “00” and “10”. The 2-bit data may be read from
the memory by sensing in “full-sequence” mode where the
two bits are sensed together by sensing relative to the read
demarcation threshold values rV |, rV, and rV; in three sub-
passes respectively.

3-D NAND Structure

An alternative arrangement to a conventional two-dimen-
sional (2-D) NAND array is a three-dimensional (3-D) array.
In contrast to 2-D NAND arrays, which are formed along a
planar surface of a semiconductor wafer, 3-D arrays extend
up from the wafer surface and generally include stacks, or
columns, of memory cells extending upwards. Various 3-D
arrangements are possible. In one arrangement a NAND
string is formed vertically with one end (e.g. source) at the
wafer surface and the other end (e.g. drain) on top. In another
arrangement a NAND string is formed in a U-shape so that
both ends of the NAND string are accessible on top, thus
facilitating connections between such strings.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 7 shows a first example of a NAND string 701 that
extends in a vertical direction, i.e. extending in the z-direc-
tion, perpendicular to the x-y plane of the substrate. Memory
cells are formed where a vertical bit line (local bit line) 703
passes through a word line (e.g. WL0, WL1, etc.). A charge
trapping layer between the local bit line and the word line
stores charge, which affects the threshold voltage of the tran-
sistor formed by the word line (gate) coupled to the vertical bit
line (channel) that it encircles. Such memory cells may be
formed by forming stacks of word lines and then etching
memory holes where memory cells are to be formed. Memory
holes are then lined with a charge trapping layer and filled
with a suitable local bit line/channel material (with suitable
dielectric layers for isolation).

As with planar NAND strings, select gates 705, 707, are
located at either end of the string to allow the NAND string to
be selectively connected to, or isolated from, external ele-
ments 709, 711. Such external elements are generally con-
ductive lines such as common source lines or bit lines that
serve large numbers of NAND strings. Vertical NAND strings
may be operated in a similar manner to planar NAND strings
and both SL.C and MLC operation is possible. While FIG. 7
shows an example of a NAND string that has 32 cells (0-31)
connected in series, the number of cells in a NAND string
may be any suitable number. Not all cells are shown for
clarity. It will be understood that additional cells are formed
where word lines 3-29 (not shown) intersect the local vertical
bit line.

FIG. 8 shows a second example of a NAND string 815 that
extends in a vertical direction (z-direction). In this case,
NAND string 815 forms a U-shape, connecting with external
elements (source line “SL.”” and bit line “BL”) located on the
top of the structure. At the bottom of NAND string 815 is a
controllable gate (back gate “BG”) which connects the two
wings 816A, 816B of NAND string 815. A total of 64 cells are
formed where word lines WL0-WL63 intersect the vertical
local bit line 817 (though in other examples other numbers of
cells may be provided). Select gates SGS, SGD, are located at
either end of NAND string 815 to control connection/isola-
tion of NAND string 815.

Vertical NAND strings may be arranged to form a 3-D
NAND array in various ways. F1G. 9 shows an example where
multiple U-shaped NAND strings in a block are connected to
a bit line. In this case, there are n strings (Sting 1-String n) in
a block connected to a bit line (“BL”). The value of “n” may
be any suitable number, for example, 8, 12, 16, 32, or more.
Strings alternate in orientation with odd numbered strings
having their source connection on the left, and even numbered
strings having their source on the right. This arrangement is
convenient but is not essential and other patterns are also
possible.

Common source lines “SL” connect to one end of each
NAND string (opposite to the end that connects to the bit
line). This may be considered the source end of the NAND
string, with the bit line end being considered as the drain end
of'the NAND string. Common source lines may be connected
so that all source lines for a block may be controlled together
by a peripheral circuit. Thus, NAND strings of a block extend
in parallel between bit lines on one end, and common source
lines on the other end.

FIG. 10 shows a memory structure in which straight verti-
cal NAND strings extend from common source connections
in or near a substrate to global bit lines (BL.0-BL3) that extend
over the physical levels of memory cells. Word lines in a given
physical level in a block are formed from a sheet of conduc-
tive material. Memory hole structures extend down through
these sheets of conductive material to form memory cells.

US 9,384,845 B2

11

Within a given block there are multiple NAND strings con-
nected to a given bit line. NAND strings are grouped into sets
of strings that share common select gates. Thus, for example,
NAND strings that are selected by SGS0 and SGD0 may be
considered a set and may be designated as String 0, while
NAND strings that are selected by SGS1 and SGD1 may be
considered as a set and may be designated as String 1 as
shown. A block may consist of any suitable number of such
sets of strings. It will be understood that the cross-section of
FIG. 10 shows portions of BLL0-BL3, these bit lines extend
further in the y-direction. Furthermore, additional bit lines
extend parallel to BLO-BL3 (e.g. at different locations along
x-axis, in front of, or behind the location of the cross-section
of FIG. 10). Other three dimensional memories are based on
resistive elements rather than charge storage elements.

Data Errors

When datais stored in a nonvolatile memory (e.g. 2D or3D
charge storage memory) for a period of time and then read
out, some errors may occur in the data. Errors may occur for
avariety of reasons including data retention issues that affect
data over time (e.g. charge leaking from floating gates). In
some cases, the root causes of errors may be some physical
defects in the memory structure resulting from the manufac-
turing process, some environmental effect, data pattern effect,
or some combination of these or other causes. In many cases,
such errors may be corrected by Error Correction Code
(ECC). However, if there are many errors in a portion of data
then it may require significant time and resources to perform
ECC correction. If the number of errors exceeds the limit of
the ECC scheme then the data may be uncorrectable by ECC
(UECC) and some other approach may be used to recover the
data (e.g. high resolution read). However, such approaches
generally require significant time and resources. If alternative
approaches fail then data may be lost. Accordingly, it is gen-
erally desirable to avoid high error rates in stored data.

The number of errors that develop in data that is pro-
grammed in a block in some memories may depend on the
condition of the block prior to programming, which in turn
may depend on the time between erase and programming
operations. When a block remains in an erased condition for
a prolonged period, changes may occur so that a block that
was erased some time earlier is not identical to a freshly
erased block. These changes may affect data retention when
the block is subsequently programmed.

FIG. 11A illustrates an example of a portion of a planar
NAND flash memory array that includes three charge storage
memory cells. Word lines WL N-1 to WL N+1 form control
gates of cells where they overlie floating gates 302a-c. FIG.
11A shows programmed memory cells with charge (negative
charge in the form of electrons) in floating gates 302a-c. In
FIG. 11A, programmed cells are erased by causing electrons
to move out of floating gates and into the channel region in the
substrate. Appropriate voltages may be applied to word lines,
including WL N-1 to WL N+1, and the substrate to remove
all, or substantially all, charge from floating gates 302a-c to
bring cells to an erased condition. Some positive charge (e.g.
charge 304) is shown trapped in gate dielectric as a result of
oxide degradation (e.g. caused by a high number of write-
erase cycles).

FIG. 11B illustrates the cells of FIG. 11A soon after
completion of an erase operation. All electrons are removed
from the floating gates 302a-c in this case. In some cases,
some reduced number of electrons may remain in floating
gates at the end of an erase operation. In other cases, some
positive charge may be present in floating gates after erase (in
addition to some positive charge in dielectric material in or
near floating gates. An erase operation proceeds until verifi-

10

15

20

25

30

35

40

45

50

55

60

65

12

cation indicates that all, or substantially all, memory cells
have threshold voltages in the erased range corresponding to
little or no charge in their floating gates. Thus, FIG. 11B
shows a portion of a newly erased block that contains little or
no charge.

FIG. 11C illustrates the cells when programming is per-
formed soon after erase of FIG. 11B. In this case, the block is
erased and then programmed without significant delay
between these operations. Appropriate voltages are applied to
word lines including WL N-1 to WL N+1 to cause electrons
to tunnel from the channel to the floating gates 302a-c until
verification indicates that the desired threshold voltages have
beenreached. FIG. 11C represents an ideal case where data is
programmed after erase without substantial delay. However,
in some cases there may be significant delay between these
operations which may cause some negative effects.

FIG. 11D illustrates the effects of leaving a block in the
erased state shown in FIG. 11B for an extended period (in-
stead of immediately programming as shown in FIG. 11C).
Because there are few or no electrons (and there may be some
positive charge) in the erased block, negative charge (e.g.
from nearby programmed blocks and/or from the substrate)
tends to migrate into the erased block. The rate at which
auxiliary charge accumulates may depend on a number of
factors including memory geometry, device dimensions,
materials used (e.g. dielectrics), the condition of the block
(e.g. number of write-erase cycles), the conditions of neigh-
boring blocks (programmed or erased), environmental factors
(e.g.temperature), and other factors. Such charge may remain
in dielectric material in and between memory cells and may
be referred to as “auxiliary charge.” While programmed
blocks may have little or no auxiliary charge (because nega-
tive charge programmed in floating gates tends to repel such
negative charge), and freshly erased blocks do not yet have
significant auxiliary charge, blocks that have been left in the
erased condition for some time may acquire significant aux-
iliary charge. The presence of such auxiliary charge may
affect subsequent programming and data retention in the
block.

FIG. 11E shows the cells of FIG. 11D soon after program-
ming. Auxiliary charge is present in the memory cells and has
an effect on memory cell threshold voltages. Negative charge
in proximity to a channel (whether in a floating gate, charge
trapping layer, or other location) generally increases thresh-
old voltage of a memory cell. The presence of auxiliary
charge increases threshold voltages so that memory cells
become programmed and pass verification with less charge in
their floating gates than if no auxiliary charge was present.
While the total effect of floating gate charge and auxiliary
charge is sufficient to bring memory cells to their target
threshold voltages, the auxiliary charge may provide a sig-
nificant portion of this total effect.

After programming of the memory cells of FIG. 11E, data
may be maintained in the memory cells for an extended
period. FIG. 11F illustrates how auxiliary charge may change
during such a period. In general, electrons that provide aux-
iliary charge migrate away from programmed cells because
negative charge (electrons) in programmed cells provides
electrostatic forces that tend to repel auxiliary charge elec-
trons. Thus, over time, auxiliary charge tends to dissipate in a
programmed block.

FIG. 11G illustrates the effect of loss of auxiliary charge
from the memory cells of FIG. 11F. Auxiliary charge is sig-
nificantly reduced in this example so that the charge affecting
the memory cells is less. Accordingly, threshold voltages of
memory cells may be reduced from the original threshold
voltages immediately after programming.

US 9,384,845 B2

13

It can be seen that memory cells that are programmed soon
after erase (e.g. FIG. 11C) do not undergo this drop in thresh-
old voltage because auxiliary charge does not accumulate in
the short time between erase and programming. Thus, there is
no significant auxiliary charge in the programmed cells of
FIG. 11C and no subsequent threshold voltage change from
loss of auxiliary charge. So blocks programmed soon after
erase may have better data retention characteristics than
blocks programmed a significant time after erase. While the
example of FIG. 11 A-G shows planar NAND memory, three
dimensional charge storage may similarly acquire auxiliary
charge and may suffer a similar data retention effect from
change in auxiliary charge in a block.

FIG. 12 illustrates the changes in programmed threshold
voltages A-G that may occur due to loss of auxiliary charge
over time in a programmed block. Threshold voltage distri-
butions immediately after programming are shown by dashed
lines. Threshold voltage distributions a significant time after
programming are shown by solid lines. It can be seen that
threshold voltage distributions generally shift downwards.
Higher distributions tend to be more affected so that higher
distributions tend to overlap or have reduced margins (e.g. the
lower edge of distribution G is shifted downwards by dV,
which may be larger than shifts in lower states and may cause
overlap with state F, or may narrow a margin between state G
and state F thereby increasing the probability of bad bits).

While an erase operation may be delayed until just before
programming to ensure that a newly erased block is always
programmed, this may lead to significant delay when writing
data. Erase operations may require significant time and per-
forming one or more erase operations in response to a write
command may exceed the time limit for execution of the write
command.

According to a partial erase scheme, a block is partially
erased in a first erase step that brings memory cells to an
intermediate condition (e.g. threshold voltages lower than
their programmed levels and above the erased level). The
block is then maintained in a pool of partially erased blocks
until the block is needed (e.g. until data is to be written in the
block). Then, the block is subject to a second erase step that
brings threshold voltages to the erased threshold voltage
range. In this way, blocks are maintained in an intermediate
condition that does not facilitate buildup of auxiliary charge
in the blocks (i.e. some negative charge in the blocks tends to
repel additional negative charge). The second erase step may
be performed immediately or shortly before programming so
that the blocks do not acquire auxiliary charge between erase
and programming. The second erase step may eliminate sub-
stantially all auxiliary charge (if previously present). Because
the memory cells are already in an intermediate condition
from the first erase step, the second erase step does not have
to remove as much charge as a conventional erase step and can
be relatively short. Thus, such a second erase step may be
performed within the time limits for a write operation.

FIG. 13 A shows an example of threshold voltage distribu-
tions of programmed memory cells in a three bit per cell
memory. Memory cells are in the erased state, or one of the
seven programmed states (A-G).

FIG. 13B shows the memory cells of FIG. 13 A after a first
erase step (partial erase) which brings the memory cells to an
intermediate condition with threshold voltages below their
programmed threshold voltages but still generally higher than
the erased level. Because this step is followed by a second
erase step (perhaps after a significant period of time), no
verification may be necessary in the first erase step. There
may be no precise target threshold voltage for the first erase
step. It may be sufficient to reduce overall charge in the block

5

10

15

20

25

30

35

40

45

50

55

60

65

14

to some level above fully erased without verification that any
particular cell has reached a specific level. Thus, erase con-
ditions may be applied in some predetermined scheme (e.g.
an erase voltage applied for a predetermined time) that does
not apply any verify steps to ensure any particular level is
achieved.

The first erase step of FIG. 13B may be performed in
response to a host command. For example, a host command
may indicate that particular data is to be erased for security
reasons (not simply marked as obsolete). In other cases, data
in a block becomes obsolete and the memory performs the
first erase step as a background operation at some later time
(i.e. block remains full of obsolete data until there is an
opportunity to perform the first erase step without impacting
execution of host commands).

In some cases, a block that is only partially written may be
partially erased. Thus, in a block that is to be erased there may
be some word lines with all memory cells already in the
erased condition. Such word lines may be subject a pre-crase
conditioning to bring them to an intermediate state so that
auxiliary charge does not accumulate near such word lines.
Thus, all word lines may have similar levels of charge when in
the intermediate state whether they were previously pro-
grammed or not.

FIG. 13C illustrates the second erase step applied to the
memory cells of FIG. 13B. Memory cells are brought to the
erased condition and are verified as erased. The second erase
step may be similar to a conventional erase operation, with a
series of erase and erase verify steps, but with a different
starting point. The second erase step may be significantly
faster than a conventional erase operation because memory
cells start in a partially erased condition instead of the pro-
grammed condition.

Dividing erase operations into multiple parts may be done
in various ways. In general, it is desirable to do a significant
portion of the overall erasing in the first erase step so that there
is relatively little to do in the second erase step and the second
erase step can be completed quickly. In some cases, the first
erase step represents more than half of the overall erase time
(i.e. the first erase step takes more time than the second erase
step). For example, the first erase step may take 60%, 70% or
more of the combined erase times (i.e. first plus second erase
times). The first erase step may also remove more charge from
the memory cells than the second erase step does.

FIG. 14 shows an example of a scheme for operating non-
volatile memory blocks. A block is programmed 440 and may
then be read 442 one or more times (or, in some cases, may not
beread). Subsequently, a determination is made that the block
should be erased 444. The block is then partially erased 446 in
a first erase step which may be different from a conventional
erase step in one or more ways. For example, a smaller num-
ber of erase voltage pulses may be applied than in a conven-
tional erase. If erase verification is performed, then the erase
verification may use a higher erase verification voltage,
“ERV,” (i.e. verification that cells have reached a higher,
intermediate state, not the erased state). A lower erase volt-
age, “VERA,” may be applied. A shorter time (i.e. shorter
and/or fewer pulses) may be used. The first erase step may be
performed in the background at a convenient time when no
host command is being executed or may be performed at a
specified time (e.g. immediately, or within predetermined
period) if requested by the host or required by security. The
block may be verified as partially erased 448 by performing a
read at an intermediate voltage above the erased threshold
voltage range. For example, a read threshold of two volts (2V)
may be applied and if fewer than 25% of cells are above this
level then the first erase step may be considered complete.

US 9,384,845 B2

15

This step may be considered optional and in some cases no
such verification is performed in the first erase step.

After the first erase step is complete, the block may be left
in a pool of partially erased blocks, “free block list,” for an
extended period 450. In this condition, there is little or no
accumulation of auxiliary charge. Subsequently, a determi-
nation may be made that the block is to be programmed 452
(e.g. a host write command is received and the block is
selected as a destination). A second erase step may be per-
formed 454 using a conventional erase scheme including
erase verification. The erase time may be significantly shorter
than a conventional erase because of the different starting
conditions. Subsequently, an erase verification step checks
that erase is complete 456 by checking that memory cells are
in the threshold voltage range corresponding to the erased
condition. Then, the block may be programmed immediately
458 (e.g. where a host write command is being executed). In
other cases, a block may be maintained in the erased condi-
tion for a limited period and must be programmed within this
period. Blocks that are not used within the limited period may
be subject to pre-erase conditioning to return them to an
intermediate condition. Thus, blocks may have some limited
shelf-life as erased blocks after which they are recycled.

While the example of FIG. 14 shows two erase steps,
erasing of a block may be done over three or more steps
separated by some intervening times in some cases. For
example, background operations may erase blocks to a first
intermediate condition followed by a second intermediate
condition before a final erase step brings memory cells to a
fully erased condition in which memory cells are ready for
programming.

A partial erase scheme may apply to all blocks of a memory
system, or to a subset of the blocks, with other blocks using a
conventional erase scheme in which a block is erased in one
substantially continuous operation. For example, some
blocks may be more susceptible to high error rates related to
data retention than other blocks. In memory systems that
contain both Single Level Cell (SL.C) blocks and Multi Level
Cell (SLC) blocks, ML.C blocks may be more susceptible to
such errors. Therefore, while blocks that are programmed
with MLC data may be managed so that they are programmed
soon after erase (e.g. using two erase steps with the second
erase step close to programming) blocks that are to be pro-
grammed with SLC data may be left in an erased condition
without significant problems. In this way, an SLC portion of
a memory may use a conventional erase scheme while an
MLC portion of a memory may use a partial erase scheme.
Thus, the same physical block may be erased using a conven-
tional erase at some times (when configured for SL.C storage)
and may be erased using a partial erase scheme at other times
(when configured for MLC storage). In other cases, particular
physical blocks may be identified as suffering from high error
rates as a result of data retention problems. Such blocks may
be identified for partial erase to improve their data retention
capability while other physical blocks continue to use a con-
ventional erase.

In some cases, blocks may be selected for partial erase
based on a prediction of poorer data retention over time (e.g.
as a function of write-erase cycle count). Thus, a block may
initially be erased conventionally during a first period of
operation and may later be determined to be at risk for data
retention problems (e.g. when a write-erase cycle count
reaches a threshold number) and may subsequently be oper-
ated using partial erase to reduce data retention related errors.

FIG. 15 shows an example of a memory system 560 with
hardware that may be used to implement various techniques
described above. The memory system 560 includes a control-

10

15

20

25

30

35

40

45

50

55

60

65

16

ler 562 and a memory die 564. It will be understood that
additional memory dies may be connected to memory con-
troller 562 using one or more busses. The memory die 564
includes multiple individually erasable blocks in a memory
array 566, which may be any suitable form of memory includ-
ing charge storage memory (e.g. NAND flash), either 2D or
3D, or other memory. Array 566 includes a pool of partially
erased blocks 568. Memory die 564 also includes peripheral
circuits 570. Peripheral circuits 570 include an erase circuit
572 that is configured to apply first erase conditions to a
programmed block to bring cells of the block to a partially
erased condition that is intermediate between programmed
and erased. This may be performed as a background operation
when memory system 560 is not busy. Blocks in the partially
erased condition make up the partially erased block pool 568
and may remain in partially erased block pool 568 for an
extended period of time. Erase circuit 572 is configured to
apply second erase conditions to a block from partially erased
block pool 568 to bring memory cells of the block to the
erased condition. The second erase conditions may be applied
in response to memory controller 562 identitying the corre-
sponding to block as a destination for data (e.g. in response to
a write command from host 80). A write circuit 574 is con-
figured to write data in the block immediately, or soon (e.g.
within a predetermined period of time) after the second erase
step. Memory controller 562 includes a logical-to-physical
mapping circuit 576 which maps logical addresses from a
host to physical addresses in memory die 564 and may iden-
tify a particular block as a destination for writing a portion of
data from host 80. ECC circuit 578 encodes data prior to
storage and decodes data after storage to identify and correct
errors (up to some maximum).

CONCLUSION

The foregoing detailed description has been presented for
purposes of illustration and description. It is not intended to
be exhaustive or to limit the attached claims. Many modifi-
cations and variations are possible in light of the above teach-
ing.

It is claimed:

1. A method comprising:

performing a first erase step on memory cells of a pro-

grammed block, the first erase step bringing the memory
cells to an intermediate state between their programmed
states and an erased state;

maintaining the block with the memory cells in the inter-

mediate state for a period of time;

performing a second erase step on the block, the second

erase step bringing the memory cells from the interme-
diate state to the erased state; and

wherein the second erase step is performed in response to

identifying the block as a destination for storage of user
data, and wherein the user data is stored after the second
erase step.

2. The method of claim 1 wherein the block is maintained
with the memory cells in the intermediate state in a pool of
partially erased blocks that are available for subsequent per-
formance of the second erase step followed by storage of user
data.

3. The method of claim 2 wherein an individual block
remains in the pool of partially erased blocks until data is to be
stored in the individual block.

4. The method of claim 1 wherein the memory cells are
charge storage memory cells and the first erase step removes
more than half the charge from the programmed block.

US 9,384,845 B2

17

5. The method of claim 1 wherein the first erase step takes
a first time, the second erase step takes a second time, and the
first time is greater than the second time.

6. The method of claim 5 wherein the first time is more than
twice as long as the second time.

7. The method of claim 1 wherein the first erase step applies
erase conditions to the memory cells without verification that
the memory cells have reached a particular state.

8. The method of claim 1 wherein the first erase step is
performed as a background operation, the second erase step is
performed in response to a host write command, and the
second erase step includes verification that the memory cells
have reached the erased state.

9. A nonvolatile memory system comprising:

aplurality of individually erasable blocks of memory cells;

an erase circuit configured to apply first erase conditions to

a block to bring the block to a partially erased condition
at a first time and to subsequently apply second erase
conditions to bring the block to an erased condition at a
second time;

a pool of partially erased blocks that are maintained in the

partially erased condition; and

awrite circuit configured to write data in the block after the

erase circuit brings the block to the erased condition.

10. The nonvolatile memory system of claim 9 wherein the
erase circuit is configured to apply the first erase conditions to
the block as a background operation.

11. The nonvolatile memory system of claim 10 wherein
the erase circuit is configured to apply the second erase con-
ditions to the block in response to receiving a host write
command and identifying the block as a destination for data
of the host write command.

12. The nonvolatile memory system of claim 9 wherein the
erase circuit is configured to bring the block to the partially
erased condition without verification of the partially erased
condition and the erase circuit is configured to subsequently
bring the block to the erased condition and to verify the erased
condition.

13. The nonvolatile memory system of claim 9 wherein the
plurality of blocks are NAND flash memory blocks and the
memory cells are flash memory cells.

5

10

15

20

25

30

35

18

14. The nonvolatile memory system of claim 9 wherein the
erase circuit is configured to remove charge from the block,
the first erase conditions removing more charge from the
block than the second erase conditions.

15. An apparatus comprising:

an erase circuit configured to perform a first erase step on
charge storage memory cells of an individual block that
is programmed, the first erase step removing charge
from the memory cells to bring the memory cells to an
intermediate state with more charge than an erased state
and maintain the block with the memory cells in the
intermediate state until the block is to be written;

the erase circuit further configured to, in response to deter-
mining that the individual block is to be written, perform
a second erase step on the block, the second erase step
bringing the memory cells from the intermediate state to
the erased state and verifying that the memory cells have
reached the erased state; and

a write circuit configured to program the memory cells
when the memory cells reach the erased state.

16. The apparatus of claim 15 wherein the erase circuit is
configured to bring the memory cells to the intermediate state
and maintain the block with the memory cells in the interme-
diate state without verification of the intermediate state.

17. The apparatus of claim 15 wherein the first erase step
removes more charge and takes more time than the second
erase step does.

18. The apparatus of claim 15 wherein the erase circuit is
configured to perform the first erase step in response to a host
command or security request requiring that data in the indi-
vidual block be made unreadable.

19. The apparatus of claim 15 further comprising:

a pre-erase conditioning circuit configured to perform pre-
erase conditioning on an unprogrammed portion of a
block that is partially unprogrammed and is identified
for erase, the pre-erase conditioning circuit configured
to add charge to memory cells in the unprogrammed
portion prior to performing the first erase step.

#* #* #* #* #*

